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Chapter 10: Tragedy of the Commons 

 

This Chapter demonstrates how ABM can handle the interaction of agents with 

their environment as well as with one another by addressing the problem of the 

over-use of shared resources. In the ‘tragedy of the commons’ the pursuit of self-

interest results in over-use of a common pool resource to the detriment of all. A 

model, inspired by English common land, is built in two stages. First, a meadow is 

created and its carrying capacity established. Then commoners are introduced. If 

there are no restrictions on the number of cows grazed on the meadow, there is 

overgrazing and ’the tragedy’ ensues. But by following actual practice observed in 

England and Switzerland of setting limits on the number each commoner is 

allowed to graze, the model demonstrates that the tragedy can be avoided. The 

model can be readily adapted to accommodate other scenarios. 

 

Key words: carrying capacity, common land, common pool resources (CPR), logistic 

function, prisoner’s dilemma, stability, sustainability. 
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Introduction  

 

The term ‘tragedy of the commons’ was coined in 1968 by Garret Hardin, a professor of 

biology at the University of California, Santa Barbara. His famous paper (Hardin, 1968) 

primarily addressed the problem of human over-population and argued that technology could 

not be relied on to accommodate ever-increasing numbers: social changes were required to 

limit the population. As one example among several, he described a pasture open to all and 

argued that, eventually, if each herdsman behaved rationally and pursued his own interest by 

adding animals to the pasture, the ‘tragedy of the commons’ would ensue because the pasture 

could not support an ever-increasing number of animals. Thus the herdsman pursuing his own 

private interest did not promote the interest of the community as a whole: Adam Smith’s 

invisible hand – see Box 5.4 – was not at work. But this analysis fails to acknowledge that 

people have found ways of avoiding the ‘tragedy of the commons’ by co-operating. For 

instance, Nobel laureate Elinor Ostrom (1990, pp.58-88) described systems that have 

persisted for hundreds of years for managing alpine pastures in Switzerland, forests in Japan 

and water for irrigation in Spain; while Straughton (2008) described the management of 

moorlands in northern England.  

 

Before discussing the issues, we first define exactly what we mean by ‘commons’. Formally, 

a ‘Common Pool Resource’ (CPR) is ‘a natural or man-made resource system that is 

sufficiently large as to make it costly (but not impossible) to exclude potential beneficiaries 

from obtaining benefits from its use’ (Ostrom, 1990, p 30). In economic terms, a CPR is not a 

public good because it is a limited resource and use by one person means that it cannot be 

used by another. In contrast the use of a public good by one person does not reduce its 

availability for another, for example a weather forecast (Ostrom, 1990, pp.31-2). Indeed, it is 

because the CPR is a limited resource that the problem of management arises.  

 

There are many different types of CPRs and each has its own distinct characteristics requiring 

different management arrangements to make best use of it. For example, compared to 

managing grazing, forestry involves very long term time horizons while the management of 

fisheries has to accommodate the movement of fish. Both forestry and fishery are covered in 

detail in Perman et al. (2003: Chapters 17 & 18), which is also a useful introduction to this 

area of economics.  
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This chapter focuses on grazing because it is simpler and it is the typical CPR found in 

England. (See Box 10.1 for background on English common land.) Following Natural 

England (2014) we call those with the right to use the common, ‘commoners’. 

 

Box 10.1: Common land in England. 

In England, Parliament has made laws on common land since the thirteenth century (Natural 
England, 2014; Straughton, 2008, p10) The Commons Act 2006 brought together in one Act of 
Parliament all the common land legislation passed in the previous 700 years (Natural England, 2014). 
The 2006 Act aims to protect common land ‘in a sustainable manner delivering benefits for farming, 
public access and biodiversity’ (DEFRA, 2014). 
 
There is a popular misconception that common land belongs to everyone but that is not the case 
(Natural England, 2014). In England, common land is privately owned land over which third parties 
have certain rights (Straughton, 2008, p. 9). 
 
There are currently just over 7 000 commons in England, together accounting for 3 per cent of the 
land area; much is poor quality grazing (Natural England, 2014).  
 

 

Economic analysis  

Game theory is sometimes applied to the CPR problem, representing it as a prisoner’s 

dilemma game (see Box 10.2). To model the ‘tragedy of the commons’ in this way, two 

commoners share a pasture and instead of jail sentences, the reward matrix shows how 

benefits vary with the number of animals grazed. In our example, the optimum herd size is 

100 and this produces a total profit of £1 000. If the optimum size of the herd is exceeded, the 

total profit declines. In the real world, this would perhaps happen because the cows are in 

poorer condition. In this example, profit (“) earned by the commoners declines according to 

this equation,  

“  πȢρὌ ςπὌ 

where H equals the number of cows, the total size of the herd: thus if there are 200 cows, the 

total profit is zero. This is illustrated in the top part of Box 10.3. If the two commoners share 

equally and both put half the optimum number of cows on the pasture, they both earn the 

same income of £500 and the total profit is maximised. However, if one commoner ‘defects’ 

by putting 60 cows on the pasture while the other puts only 50, then the herd size rises to 110. 

Given the profit function above, the total profit falls to £990 or £9 per cow. Nevertheless, the 

‘defector’ gains at the expense of the other, with a total gain of 60 x £9 = £540 instead of 

£500 under the optimum scenario. However, the other commoner receives less than the 
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optimum, only £50 x £9 = £450 instead of £500. If both commoners think the other will put 

60 cows on the common, both have an incentive to graze 60 cows. The total herd size then 

rises to 120 and the total gain falls to £960 or £8 per cow. Both commoners therefore receive 

£480 and both are worse off than in the optimum scenario. If this continues to the extreme 

and each commoner puts 100 cows on the pasture, the tragedy occurs and both commoners 

get no income. The reward matrix is shown in the lower part of Box 10.3. The precise figures 

are not important, but simply illustrate the principle, namely that the incentives for 

individuals are such that they bring about an outcome that is undesirable for all. 

Box 10.2: Prisoner’s dilemma and the ‘Tragedy of the Commons’. 

The scenario is as follows. Two friends are suspected of committing a crime and are taken into police 
custody. They are put in separate cells, so that they cannot communicate with each other. They are 
both told: 

- If you do not confess, but your friend does, you will get a sentence of 10 years 
- If you confess, you will only get a sentence of 5 years 
- If neither of you confess, we will charge you with a lesser crime, and you’ll still get a 

sentence, but only a year. 
The reward matrix looks like this with the sentences shown as, for example, (10, 5) meaning that A 
gets 10 years and B gets 5 years. 
 

 Suspect A 

Suspect B Confesses Does not confess 

Confesses (5, 5) (10, 5) 

Does not confess (5, 10) ( 1, 1) 

 

It is in the interests of both not to confess, and then each would receive a sentence of one year. But 
if A does not confess and B does, then A will receive the maximum sentence. And the same holds for 
B. Neither knows what the other will do. Consequently, both will probably confess in order to avoid 
the maximum sentence and each will get 5 years.  
 
For more information on game theory and the prisoner’s dilemma, see for example, Varian (2010 
Chapters 28 & 29:) or Begg et al (2011, pp. 206-212). 
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Box 10.3: Example of how the ‘Tragedy of the Commons’ occurs in Prisoners’ Dilemma 

format 

Once the optimum size of the herd, 100, is exceeded, the total profit (“) earned by the 
commoners declines according to the equation  “  πȢρὌ ςπὌ where H equals the total 
size of the herd. This is illustrated in the left hand graph. Each commoner’s profit is calculated 
as the total profit divided by the number of cows, illustrated in the right hand graph. 
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50 
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Profit per cow (£) 10 9 5 

 
A's profit (£) 500 540 500 

 
B's profit (£) 500 450 250 
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60 
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But setting out the Tragedy in this way demonstrates why the prisoner’s dilemma is not 

applicable to this situation. The simple, single, prisoner’s dilemma game assumes that there is 

no communication, no co-operation and the commoners have no regard for the future. People 

do not always act in their short term interest: they care about the long-term future, be it their 

own or that of their children. In a stable society in which people expect that they and their 

families will continue to live and work alongside one another for years or even generations, 

the kind of behaviour implied by the prisoner’s dilemmas is unlikely. The key characteristic 

of the prisoners’ dilemma is that co-operation is forbidden. (For further discussion, see 

Ostrom, 1990, pp.2-20.) Similarly, in the Cournot-Nash equilibrium problem discussed in 

Chapter 6, there was no co-operation allowed. Readers interested in modelling this 

uncooperative behaviour can adapt the Cournot-Nash model presented in Chapter 6. 

 

However, it is not clear how co-operation does emerge. Ostrom (1990) suggests that it is a 

slow, protracted process. Game theory based on an unlimited number of repeated games may 

provide a clue. If a prisoner’s dilemma game is repeated indefinitely, a ‘tit-for-tat’ strategy – 

in which each player copies what the other player did in the previous round – co-operation 

can emerge. (See, for instance, Varian (2010, pp.529-530). Here we extend the prisoner’s 

dilemma example by increasing the number of commoners to 10. Now, on the basis of the 

example used above, and assuming that the size of the herd is 150, compared to the optimum 

of 100, then it is clearly beneficial overall if the herd size were to be reduced. But if one of 

the commoners reduces the number of their cows, the group as a whole will gain but the 

reducer will lose out. At the other extreme, if all reduce the number of their cows, all benefit 

too. In this example, it is possible for both the group and all individuals to benefit if just four 

commoners reduce the number of their cows. This is illustrated in Table 10.1. It demonstrates 

how co-operation might start. Again, the precise numbers are not important. 
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Table 10.1: Example of co-operation generating benefits (based on data in Box 10.2) 

        

No. of commoners reducing 1 4 10 

No. of commoners unchanged 9 6 0 

        

    Change in size of herd -1 -4 -10 

Change in reducers' profit (£) -3.6 0.6 9 

Change in other's profit (£) 1.5 6 9 

Total change in profit (£)  10  38  90 

        

 

Ostrom (1990, p.90) defined seven key conditions for co-operative systems to manage CPRs 

to endure over long periods, which can be paraphrased as follows: 

1. Clearly defined boundaries: both users and the extent of the CPR must be well defined 

2. Rules of use must reflect local conditions: different rules will be appropriate for 

different times and places 

3. Most individuals involved must be able to influence the rules 

4. The rules must be enforced by the commoners themselves or people directly 

accountable to them 

5. Sanctions for violations should be gradual and imposed by the commoners or those 

accountable to them 

6. There must be low cost, local procedures for resolving disputes 

7. The rights of the commoners to make their own arrangements should not be 

challenged by external authorities. 

The essence of these conditions is cooperation, supported by social constraints, especially 

those that operate in stable societies. 

 

More recently, after studying a range of systems in very different environments, Liu et al. 

(2007) concluded that ‘couplings between human and natural systems vary across space, 

time, and organizational units. They also exhibit nonlinear dynamics with thresholds, 

reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises.’ These all 

suggest there is a potential for effective use of ABM. 
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Model 

 

Chapman et al. (2009) have produced a detailed simulation of the management of moorlands 

in northern England but this is too detailed for our purpose. Schindler (2012a & 2012b) has 

created two models using NetLogo that address the tragedy of the commons on grazing land, 

but these models are too complicated and in one case, are based on African herdsmen. Our 

model is designed to demonstrate the dynamics and interaction as simply as possible taking 

English common land as its inspiration. 

 

We start by creating a model of a meadow and establishing its ‘carrying capacity’ which we 

define as the number of cows that it can support over a given period of time. We then add 

commoners so that we can examine alternative strategies for sharing the meadow. 

 

The carrying capacity of the meadow 

 

‘Carrying capacity’ will, of course, vary with the type of animals, the climate and the nature 

of the soil. For example, the number of sheep that can be supported on sparse grazing on the 

hills in northern England will be quite different to the number of ponies that can be supported 

by the same area of land in the New Forest in warmer, southern England. Detailed biological 

models have been built such as Armstrong et al.’s (1997) Hill Grazing Management Model. 

But our focus of interest is not on the detailed biological processes but the strategies between 

commoners; so at this stage we keep our model as simple as possible, although we draw very 

broadly on data for the UK such as EBLEX (2013).  

 

The rate at which grass grows depends on all sorts of factors and varies during the year. In 

England, it is faster in the spring and early autumn, less in the summer and barely grows at all 

in winter. Here we focus on summer grazing and for simplicity assume that grass grows at the 

same rate throughout the period. The growth of grass is modelled using a logistic function 

following Perman et al. (2003: 562). Logistic functions are explained in the top panel of Box 

10.4. For example, if a cow grazes a patch of grass down to 0.25 of its maximum, the grass 

growth rate is set at 0.2 per week and a grazed patch is not grazed again until it reaches 0.9 

units, it will take 16 weeks for a grazed patch to recover sufficiently to be grazed again. This 

is illustrated in the bottom panel of Box 10.4. These parameter values have been chosen to 
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ensure that the carrying capacity is a reasonably small number of cows in order to reduce the 

time taken by each run.  

Box 10.4: Grass growth using a logistic function. 

 

 

The logistic equation, devised by Verhulst in 1838 to describe the growth of populations, can be 
used to produce a simple non-linear model in which the change depends on the level in the previous 
period and the growth rate (Strogatz, 1994, pp. 9-10 & 22-23). 
 
If Ὃ is the amount of grass at time t and Ὣ the rate at which grass grows each week, then the 
amount of grass in the next period is given by: 
 

Ὃ Ὃ  Ὃ ρ Ὃ Ὣ 
Where π Ὃ ρ and  Ὣ ρ . 
 
For example, if Ὃ equals 0.25 and Ὣ is set at 0.2 then after one week, Ὃ  will be 0.2875:  
 

Ὃ πȢςυ πȢςυ  πȢχυ πȢς πȢςψχυ 
 
If, however, the grass has nearly reached its maximum, the absolute level of growth will be much 
lower. For example, if Ὃ equals 0.95 and Ὣ is set at 0.2 then after one week, Ὃ  will be 0.9595:  
 

Ὃ πȢωυ πȢωυ  πȢπυ πȢς πȢωυωυ 
 

 

Example of grass growing at rate of 0.2 per week. If it is grazed down to 0.25, it will recover to 0.9 

after 16 weeks. 
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The model meadow comprises 9 999 patches. Initially each patch has 1 unit of grass. The 

modeller sets the initial number of cows and these cows are distributed randomly. Each cow 

then eats 0.75 units of grass and the next week moves on to the nearest unoccupied patch with 

sufficient grass, defined at 0.9 units. (Cows are not allowed to eat all the grass on a patch as it 

will not then regrow!) 

 

If the cows eat the grass faster than it grows, the pasture available will decline. As the rate at 

which grass grows is fixed, if there are too many cows, the pasture will be over-grazed and 

the cattle will starve. The model runs for 25 weeks, to represent a summer of grazing. To 

establish the basic characteristics of the model, we start by assuming that the grass does not 

grow. With 400 cows, each consuming 1 patch of grass a week, then the meadow will support 

the all the cows for 25 weeks. The model produces this result.  

 

Allowing the grass to grow a little each week transforms this scenario. Using a growth rate of 

0.2 (as illustrated in Box 10.4), as many as 600 cows will survive the summer season 

although very little grass is then left by the end, suggesting that this level of use will not be 

sustainable in the long run. However, if there are more than 700 cows, they cannot survive 

the summer: the grass runs out after 16 weeks. This is shown in Figure 10.1.  

 

More information on this model – the Carrying capacity model – is in Appendix A10.1. 
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Figure 10.1: Cows supported and grass available when the grass grows. 

Assumptions 
Number of patches of grass = 9 999 
Grass growth per week = 0.2 
Grass consumed per cow per week = 0.75 
Grass required before a patch can be re-grazed = 0.9 
 

Cows 
 
 

Grass: patches at start of week with enough 
grass to feed a cow for a week 

 

 

 
 

 

 
 

The standard deviations are not shown to keep the diagrams clear.  
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Managing the meadow 

Having established the characteristics of the model meadow, and in particular its carrying 

capacity, we now introduce commoners to manage the cattle. 

 

Instead of modelling just one summer’s grazing, the meadow management model covers 

many years. Of course in reality, the rate of growth of the grass and thus the carrying capacity 

would vary from year to year. But in order to be able to draw out the key dynamics, it is 

assumed that the grass grows at the same rate in all years. As before, the cows graze for 25 

weeks. They are then removed and the grass has the opportunity to recover a little: it is 

assumed that there are only 5 weeks of growth, reflecting the fact that grass in England grows 

only a little over winter. (See, for example, EBLEX, 2013.) 

 

There are 10 commoners and at the start of the run the number of cows – set at 300 in our 

examples – is divided equally between them. At the beginning of each year the commoners 

decide whether to increase or reduce the number the cows they will graze that summer. In the 

examples used in the Introduction, the commoners made their decisions on the basis of a loss 

function. In the model, the grazing of the meadow in effect replaces this loss function in that 

it determines how many cows survive and thus how much money the commoners make. We 

also saw in the Introduction how if a few commoners responded to a loss by cutting back, the 

situation could be improved for everyone. Based on this, a pair of simple heuristic decision 

rules is used:  

¶ If all a commoner’s cows survive the summer, the commoner increases their herd by 

an upwards factor, to reflect an incentive to take more. 

¶ If all the cows do not survive, the commoner reduces the size of their herd by a 

downwards factor, to reflect a dislike of losses. 

Each commoner is randomly allocated a downward and an upward factor based on a normal 

distribution with a mean set by the modeller and the standard deviation set equal to the mean. 

The upward and downward factors cannot be negative but can be zero and are arbitrarily 

constrained to be less than one in order to avoid any commoner making very large increases 

or being left with no cows. (A commoner always has at least one cow at the start of the 

summer.) So a commoner with a downward adjustment factor of zero will never react to 

losses while one with an upward adjustment factor of zero will never increase the number of 

his cows. It is implicit in the rules that the commoners can make these adjustments, either by 
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selling unwanted stock or by buying more, so a commoner is always able to replace any lost 

cows.  

 

These adjustment factors can be interpreted in terms of risk aversion and cooperativeness.  

¶ A high downwards adjustment factor could be interpreted as risk aversion, trying to 

protect against future losses, or as cooperativeness.  

¶ A high upward adjustment factor could be interpreted as greed while a low upward 

adjustment factor could again represent risk aversion.  

Kahneman & Tversky (1979) suggested that people feel losses more than they relish gains. 

This implies that risk aversion typically outweighs greed. Translated into our model, it means 

that upward adjustment factors should be lower than downward adjustment factors. So, we 

have arbitrarily combined a downward adjustment factor based on a distribution with a mean 

of 0.5 with an upward adjustment of 0.1.  

 

Putting aside the factors determining the rates of grass growth and consumption – which are 

set as in the carrying capacity model – the modeller can set just these factors:  

¶ the initial number of cows 

¶ the means (and standard deviations) of the downward and upward adjustment factors 

¶ whether there is a limit on the number of cows any commoner can graze on the 

meadow and if so, what that number is. (More will be said about this later.) 

¶ the number of years that the model will run. 

The model records the number of cows at the start of each summer grazing season and the 

number at the end, both in total and for each commoner. 

 

The aim is to establish how best to create sustainable stability. Four indicators are used: 

¶ The average number of cows at the end of each year: the more the better. 

¶ The survival rate: the percentage of cows that survive the summer. The higher this 

number, the better and ideally the survival rate should be 100 per cent. 

¶ The proportion of years in which some cows die i.e. the survival rate is less than 100 

per cent. The lower this number, the better: ideally it should be zero. 

¶ Whether there is any variation in the number of cows at the end of year during the last 

10 years: the less variation, the better and ideally there should be none, indicating that 

the system is stable. 
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Furthermore, comparing the first three calculated over all 25 years with the same indicators 

calculated over just the last 10 years shows whether the system is becoming more over time. 

It is important to consider these four indicators together. For example, it would not be an 

efficient use of the resources provided by the meadow if there were on average only 100 

cows grazing even if the survival rate were then always 100 per cent and the number of cows 

on the common was constant as we know that the meadow can support significantly more. 

 

To explore the dynamics of this simple model, we start by setting the limit for each 

commoner at 1 000, which in effect means there is no limit as this level is way above the total 

carrying capacity of the meadow. Each commoner starts with 30 cows. The model is run 15 

times for 25 years. Figure 10.2 shows the number of cows at the end of each year: it is highly 

volatile. For example, after five years, the number of cows at the end of any given year often 

ranges from zero to over 500 from one run to another. Furthermore, although the commoners 

all start with the same number of cows, by the end of the 25th year, most of the cows being 

grazed tend to belong to just one or two commoners. When there are any cows left at all, on 

average, one commoner owns 58 per cent (s.d. 18). How this concentration arises is shown in 

Box 10.5 which uses actual examples from one of these runs.  
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Figure 10.2: Meadow management model results: limit of 1 000 cows per commoner 

15 runs over 25 years 

Assumptions 
Meadow assumptions as in Figure 10.1. 
300 cows initially evenly distrubuted across 10 commoners. 
Mean (and standard deviation) of distribution of  downward adjustment factor = 0.5 
Mean (and standard deviation) of distribution of  upward adjustment factor = 0.1 
Limit = 1 000 per commoner 

 
 

Mean(solid line) and plus and minus one standard deviation (dotted lines) in number of cows at 
the end of year 

 
 

  

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To
ta

l c
o

w
s 

at
 e

n
d

 o
f 

ye
ar

 

Years 

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To
ta

l c
o

w
s 

at
 e

n
d

 o
f 

ye
ar

 

Years 



Agent-based Modelling in Economics: Hamill & Gilbert (2015) 

16 

 

Box 10.5: Examples of commoners’ experiences 

A’s downward adjustment factor = 0.5 and upward adjustment factor = 0.1 
B’s downward adjustment factor = 0.5 and upward adjustment factor = 0.2 
Both commoners start with 30 cows, as do all the other commoners. 

 
In year 1, all A’s cows survive and so in year 2, he grazes 30 x 1.1 = 33 cows. All B’s survive too, but B 
increases the number of cows in year 2 to 30 x 1.2 = 36.  
 
This continues until year 11, by which time at the start of the year A puts 72 cows on the common 
and B 177. In total 573 cows are put out to graze. This overloads the common and only 330 survive, 
including 42 belonging to A and 98 belonging to B. Following the adjustment rule, the next year, 
both grazes only half as many as at the start of the previous year: A grazes 36 (72 x 0.5) and B, 89 
(177 x 0.5). 
 
All is well until year 19. At the start of that year, A puts 66 cows on the meadow and B, 313. In total, 
598 cows are put out to graze. The meadow cannot support this number and all but are 86 lost. Just 
11 of A’s cows and 50 of B’s survive. The next year, year 20, A puts out 33 and B, 157, being half of 
the number with which they started the previous year. 
 
Each year all the other commoners put more cows on the common until in year 25 there is another 
crash. By the end of year 25, there are just 182 cows on the common, of which A has 17 and B, 118. 

Short bars mean that the number of cows at the end of the year was the same as at the start. Long 
bars mean that the number of cows dropped during the year i.e. less than 100 per cent survived. 

Commoner A’s cows 

 

Commoner B’s cows 
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What then might bring more stability to this system? A rule found in both England 

(Straughton, 2008, p.119) and Switzerland (Ostrom, 1990, pp.61-65) is that commoners are 

allowed to put on the common land pasture the same number of animals that they can support 

over winter. In practice, this means those with larger farms will be able to put more animals 

on the common because they have more land with which to produce forage (such as hay) to 

feed to the animals during the winter months when there is no grass available. This prevents 

commoners buying in animals to graze on the commons over the summer to sell on before 

winter. For simplicity we have assumed that the limit for each commoner is set at the same 

level and leave it as an exercise for readers with programming skills to explore the impact of 

an unequal distribution. This limit could be enforced by some well-informed public official, 

or it could evolve over time as Ostrom’s work suggests.  

 

We know that the carrying capacity of the meadow is less than 700 cows. However, even if 

the limit were set at 100 per commoner, thus potentially allowing up to 1 000 cows in total, 

there is still a significant improvement in all four indicators. The first two columns of Table 

10.2 show that with a limit of 100 per commoner, the meadow supports more cows than when 

there is no limit: on average 414, with a survival rate of 95 per cent instead of 370 with a 

survival rate of 85 per cent. Also, with this limit, the indicators over last 10 years are better 

than for the period as a whole while this is not the case for when there is no limit. 

Furthermore, the extreme inequality in the distribution of cows across the commoners is 

reduced. With a limit of 100 cows per commoner, after 25 years on average the commoner 

with the most cows on the meadow has 22 per cent (s d 3) of the total. 

 

Reducing the limits increases the benefits. Arguably, a limit of 60 cows per commoner 

produces the best results, with an average of 476 cows being grazed with a survival ratoe of 

99.7 per cent. With a limit of 60 cows per commoner, there is only a slight increase in 

inequality over the 25 years and on average 7 of the 10 commoners have the maximum 

number of cows permitted. But the risk of occasional ‘crashes’ remains as indicated by the 

figures shown in Table 10.2 and shown in the top panel of Figure 10.3. To avoid any crashes, 

it would be necessary to impose a limit of 50, as shown in the last column of Table 10.2 and 

the bottom panel of Figure 10.3. But to achieve this stability means that there would on 

average be fewer cows grazed.  

 

More information on this model – the Meadow management model –is in Appendix A10.2.
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Table 10.2: Effect of imposing limits on the number of cows each commoner can graze on the meadow. 

Limits 1 000 100 90 80 70 60 50 

Over 25 years 
       Number of cows at end of year 370 414 414 410 443 476 425 

(Standard deviation)  (25)   (23)   (31)   (20)   (26)   (27)   (29)  

Per cent of cows surviving the summer 85.3 95.4 95.8 96.9 98.8 99.7 100.0 

Per cent of years in which survival rate is less than 100%  22 11 11 8 4 2 0 

Over last 10 years 
       Number of cows at end of year 361 446 440 439 490 506 443 

(Standard deviation)  (45)   (28)   (41)   (30)   (35)   (36)   (33)  

Per cent of cows surviving the summer 37.0 96.8 96.6 97.6 99.8 99.7 100.0 

Per cent of years in which survival rate is less than 100%  32 13 13 7 1 2 0 

Probability of achieving stability* 0 0 0 40 87 80 100 

* Per cent of runs in which the number of cows was constant. 
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Figure 10.3: The number of cows at the end of each year with a limit of 60 or 50 per 

commoner.  

Assumptions 
Meadow assumptions as in Figure 10.1. 
300 cows initially evenly distrubuted across 10 commoners. 
Mean (and standard deviation) of distribution of  downward adjustment factor = 0.5 
Mean (and standard deviation) of distribution of  upward adjustment factor = 0.1 
15 runs over 25 years (but only a few lines are visible as several runs produced the same long-term 
result) 

Limit = 60 per commoner 
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Discussion 

 

To investigate the tragedy of the commons, we created a simple world, comprising two types 

of agents – commoners and cows – and an environment, and experimented with it. By 

keeping the model as simple as possible, with the minimum number of variables, we have 

been able to obtain a clear understanding of the processes involved by experimentation; by 

holding everything else the same and changing just one variable at a time. Despite its 

simplicity, the model can generate a wide variety of outcomes due to the fact that there are so 

many dynamic processes interacting, which is perhaps why it can be so difficult to reach 

sustainable stability.  

 

The commoners are not assumed to optimise, but use only two heuristic behavioural rules. 

The only information they require is what happened to their cows during the last summer. So 

there are no additional monitoring costs involved. Nor is there any assumption that they 

possess full information of the past, let alone of the future.  

 

This model has shown how the tragedy of the commons can be avoided using a simple rule 

that is actually observed in the real world. The key is having a limit on how many animals 

each commoner is allowed to graze. That is hardly a surprising result. Of more interest is the 

finding that even though the optimal limit might not be known, an approximation will still 

produce useful benefits (as shown in Table 10.2). Furthermore, because the system is grown 

from the action of individual agents, it is possible to drill down to see what happens. The 

model shows that if there is no limit set on the number of cows a commoner can graze, the 

cows can become very unequally distributed between the commoners over the years. Even a 

simple limit of 100 significantly reduces this inequality. A simple rule has, in effect, brought 

some order to the highly unstable – maybe chaotic? – system. 

 

This basic model could be explored by using different parameter values; and it could be 

extended in many other ways. For example, with very little re-programming, the commoners 

could be given other decision rules. One of the advantages of ABM is that it is possible to test 

the effect of different behavioural rules. For instance, instead of using limits on the number of 

cows each commoner can graze, we could say that at the start of each year the commoners 

inspect the grass on the meadow. If there is less than a certain amount – we have arbitrarily 
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chosen 4 000 grazing patches – then each commoner puts less stock out to graze in the 

coming summer. How many each commoner puts on depends on how many he grazed the 

previous year and their downward adjustment factor. If there is plenty of grass, the 

commoners increase their stock by their upward adjustment factors. This time we start each 

commoner with 50 cows and assume that both adjustment factors are distributed with a mean 

(and standard deviation) of 0.1. So, for example, if a commoner grazed 60 last year and there 

are less than 4 000 grazing patches available at the start of this year, and his downward 

adjustment factor is 0.1, then he will graze 54; but if there are 4 000 or more grazing patches, 

he will increase his stock by 10 per cent to 66. At the macro level, although complete stability 

is not achieved, a large number of cows are supported and there is a very high survival rate as 

shown in Box 10.6. But at the micro level, after 25 years, there is much more diversity 

between commoners in the sizes of their grazing herds than if there was simply a limit of 50 

or 60 cows per commoner set. In this example, after 25 years, one commoner has on average 

31 (s.d 8) per cent of the cows on the meadow.  

 

Other scenarios are suggested in the ‘Things to try’ sections. Alternatively, readers may like 

to explore Sugarscape, a well-known agent-based model in which agents move across a 

landscape consuming its resources (Epstein & Axtell, 1996). Parts of the Sugarscape model 

are available in the NetLogo Library (Li & Wilensky, 2009). 

 

Our model does not explain how co-operation is attained. While case studies have shown 

what factors contribute to long-term cooperative solutions, how such solutions have emerged 

is not clear. Exploring this, perhaps using variations of the repeated prisoner’s dilemma 

game, may prove interesting. (There are examples of a multi-person iterated prisoner 

dilemma game in the NetLogo Library (Wilensky (2002).) 

 

Returning to the themes of the book: interaction, heterogeneity and dynamics, this Chapter 

has demonstrated the importance of combining all three. The commoners interact with their 

environment and, indirectly, with each other over time and they are heterogeneous in that 

they react to changes in different ways. Agent-based modelling facilitates the modelling of 

this complex dynamic system in a way that other methods simply cannot.  
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Box 10.6: Co-operative action when little grazing is available. 

  

Assumptions 
Meadow assumptions as in Figure 10.1. 
500 cows initially evenly distrubuted across 10 commoners. 
Mean (and standard deviation) of distribution of downward adjustment factor = 0.1, triggered by 
less than 4 000 grazing patches at start of year. 
Mean (and standard deviation) of distribution of upward adjustment factor = 0.1 
10 runs over 25 years  
 

. 

Mean(solid line) and plus and minus one standard deviation (dotted lines) in number of cows at 
the end of year 

 

 

Over 25 years   

Number of cows at end of year 486 

(Standard deviation)  (28)  

Per cent of cows surviving the summer 99.5 

Per cent of years in which survival rate is less than 100%  2 

Over last 10 years 
 Number of cows at end of year 492 

(Standard deviation)  (11)  

Per cent of cows surviving the summer 100.0 

Per cent of years in which survival rate is less than 100%  0 

Probability of achieving stability* 0 

* Per cent of runs in which the number of cows was constant. 
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Appendix to Chapter 10 

A10.1: Carrying capacity model 

Formal description 

Purpose: The aim of the model is to establish the carrying capacity of a meadow. 

Entities: Agents are cows and the patches carry grass. 

Stochastic processes: Distribution of cows over the meadow. 

Initialisation: 

¶ initial number of cows  

¶ how much each cow eats each week 

¶ the weekly rate at which grass grows 

¶ the minimum amount of grass on a patch required to feed a cow for a week 

¶ the number of runs required. 

Outputs: Data on the amount of grass and the number of cows is collected and sent to a csv 

file. 

 

The pseudo-code is in Box A10.1 and a screen shot in Figure A10.1. For the full code see the 

website: Chapter 10  – Carrying Capacity Model. 
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Box A10.1: Pseudo-code for the carrying capacity model. 

 

Create a world 101 x 99 = 9 999 patches with no wrap-around. 
 
Put grass with the maximum value of 1 on all the patches. 
Create cows and distribute them over the meadow. 
 
Weekly cycle 

The cows eat the grass on their patch. 
The grass then grows, according to a logistic function. 
Each cow moves to the nearest patch with sufficient grass to support it for a week. 
If a cow cannot find a patch with enough grass, the cow dies. 

Repeat this process for 25 weeks. 
 
Data collection 

Ongoing counters record the number of runs performed, the number of weeks passed, the 
number of cows and the number of grass patches that can support a cow. 
Record at the start and end of each week the number of cows and the number of patches with 
enough grass to support a cow for a week.  
Record at the end of each run the distribution of patches by amount of grass at the start and end 
of the summer. 
Calculate the averages and standard deviations for the number of cows and number of grazing 
patches over all the runs. 
Display resulting data and send to a csv file. 

 

 

Figure A10.1: Screenshot of the carrying capacity model. 
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Things to try using the carrying capacity model 

Use the sliders to investigate: 

¶ what happens if the cows eat more each week? 

¶ what happens if the grass grows more slowly? 

¶ what happens if  the minimum amount of grass on a patch required to feed a cow is 

less? 

Advanced, requiring programming: 

¶ what happens if the grass grows faster in the spring? 

¶ what happens if the cows have different grazing habits, such as only being able to 

seek grazing within a limited distance? 

¶ what happens if the cows have calves? 

  



Agent-based Modelling in Economics: Hamill & Gilbert (2015) 

28 

 

A10.2: Meadow management model 

Formal description 

Purpose: The aim of the model is to illustrate how a common area of grazing can be 

managed. 

Entities: The patches carry grass and there are two types of agents: cows and commoners. 

Stochastic processes:  

¶ Distribution of cows over the meadow  

¶ Each commoner’s adjustment factors 

¶ Allocation of cows to commoners (but as all cows are identical, except in initial 

location, this is not important). 

Initialisation: 

The meadow 

¶ how much each cow eats each every week 

¶ the weekly rate at which grass grows 

¶ the minimum amount of grass on a patch required to feed a cow 

The commoners 

¶ initial number of cows  

¶ mean (and standard-deviation) of the adjustment factors 

¶ the number of years 

Outputs: Data on the amount of grass and the number of cows in total and belonging to each 

commoner is collected and sent to a csv file. 

 

The pseudo-code is in Box A10.2 and a screen shot in Figure A10.2. For the full code see the 

website: Chapter 10 –Meadow Management Model. 
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Box A10.2: Pseudo-code for the meadow management model. 

 

Reproduce the carrying capacity model but  
- with a larger world to accommodate the commoners in an area outside the meadow  
- recording the results for just one run at a time (as because of the volatility It is not 

appropriate to average the results over several runs). 
 
Create 10 commoners and locate in an area outside the meadow. 
Allocate to each commoner. 

- one tenth of the initial number of cows 
- a downward adjustment factor based on a random normal distribution with a mean set by 

the modeller (and a standard deviation to equal the mean) 
- an upward adjustment factor based on a random normal distribution with a mean set by the 

modeller (and a standard deviation to equal the mean 
o ensure both the adjustment factors lie between 0 and 0.9, inclusive. 

 
Annual cycle 

Cows graze as in the carrying capacity model. 
At the end of each year, all the cows die. 
The grass grows a little over the winter. 
Each commoner decides how many cows to put on the meadow for the summer based on their 
experience of the previous year and their adjustment factors. 

Repeat the process for the number of years chosen by the modeller. 
 
Data collection 

Record the number of cows grazed by each commoner at the start of each summer and how 
many survive until the end. 
Record at the start and end of each year the number of cows and the number of patches with 
enough grass to support a cow for a week.  
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Figure A10.2: Screenshot of the meadow management model. 

 

 

Things to try using the meadow management model 

Use the sliders to investigate the effect changing: 

¶ what is the effect of changing the initial number of cows? It has been assumed that the 

initial number of cows is below the carrying capacity of the meadow. What happens if 

the initially number of cows put out to graze is above the sustainable level, say 700? 

¶ what is the effect of using different mean (and standard-deviation) of the adjustment 

factors? 

¶ Under what circumstances is there more likely to be stability if the model is run for 50 

instead of 25 years? 

Advanced, requiring programming 

¶ Devise other decision rules: for example, in making their decision as to how many 

cows to graze, commoners might consider what happened to other commoners, 

perhaps their immediate neighbours, as well as themselves in the last year.  

¶ It is very unlikely that all commoners have the same capacity to overwinter animals 

and we suspect that in many cases, the distribution will roughly follow a power law 

with an exponent of about -1, i.e. with one farmer having significantly more capacity 

than all the rest. (For a discussion of power law distributions, see Box 7.5.) Instead of 

distributing the cows evenly between the 10 commoners give one 50 per cent the 

cows, two 12.5 per cent each, three 5 per cent each and the remaining four each 2.5 
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per cent each. (Hint – see how employees were distributed between firms in the 

Guildford Labour Market Model in Chapter 7.) 

¶ Explore how the limits might be reached through direct co-operation between 

commoners, drawing on Ostrom’s seven key conditions for successful management of 

a CPR. 


